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Abstract

Despite their prevalence in everyday technologies, auto-
mated speech recognition (ASR) systems often struggle with
disfluent speech. To diagnose and address these technical chal-
lenges, we evaluate OpenAI’s Whisper, a state-of-the-art ASR
model, using speech samples from podcasts with people who
stutter. Our results show significant disparities in Whisper’s per-
formance between fluent and stuttered speech. Within disfluent
speech, Whisper performs significantly worse on speech with
sound repetitions - a disfluency more unique to stuttering. No-
tably, sound repetitions not only lead to transcription mistakes
but also trigger Whisper to hallucinate over 20% of the time.
Conducted by researchers who stutter, this study brings new in-
sights on ASR biases against disfluent speech and highlights
the value of disability-led research in addressing technological
inequities affecting people with disabilities.

Index Terms: speech recognition, hallucination, stuttering,
speech disfluency, algorithmic fairness

1. Introduction

Stuttering affects approximately 1% of world population [1].
While it is typically characterized by observable and involun-
tary “speech disfluencies”, many people who stutter (PWS) also
experience significant reductions in their quality of life due to
the communication challenges that they face everyday [2].

As Automated Speech Recognition (ASR) technologies be-
come an integral part of today’s communication environment,
they are playing an increasingly important role in the communi-
cation experiences of people who stutter. However, trained and
optimized for fluent speech, today’s ASRs often have great dif-
ficulty in working with stuttered speech, resulting three to four
times higher word error rate (WER) compared to non-stuttered
speech [3]. While some previous work has reported ASR’s per-
formance disparity between stuttered and fluent speech [3, 4, 5],
their findings remain limited in consistency, depth and a di-
rect connection to the stuttering experience. Conducted by two
researchers who stutter, this work systematically benchmark
Whisper — OpenAl’s state-of-the-art ASR model with highly
robust performance across languages and noisy environments —
against an refined version of the SEP-28K dataset [6], a collec-
tion of natural stuttered speech annotated with stutter subtypes.

By examining Whisper’s transcription errors against verba-
tim and semantic transcriptions, as well as under different sub-
types of stutter, we present new insights on Whisper’s progress
and weakness in transcribing stuttered speech, shedding light
on new directions and community-centered goals for stuttering
friendly ASR technology.
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2. Related Works

While ASR systems have achieved remarkable performance on
various benchmarks, disparities persist in their effectiveness
across different demographic and linguistic groups. These dis-
parities often arise from biases in training datasets [7] and sys-
temic exclusion of marginalized communities [8].

Previous work has shown existing ASR models’ poor per-
formance with diverse speech patterns including stuttering [3, 4,
9], deaf speech [10], aphasia [11], second language speech [12],
and regional and ethnic dialects [13, 14]. The inability of speech
Al systems to work with diverse speech not only creates bar-
riers for people with speech diversities to access mainstream
products and services — such as voice assistants and automated
phone menus, but can also lead to psychological harm [15] and
reduced economic opportunities [16].

Recognizing these gaps, recent research has explored dif-
ferent strategies to improve ASR accuracy for stuttered speech.
For example, Shonibare ef al. proposed a “Detect and Pass”
method, which uses a context-aware classifier to detect stut-
tered frames and passes this information to the ASR model dur-
ing inference, resulting in significant reduction in WER [17].
Another approach involves data augmentation with synthesized
stuttered speech. Zhang et al. developed Stutter-TTS, a neu-
ral text-to-speech model capable of synthesizing diverse types
of stuttering utterances [18]. Fine-tuning an ASR model on
this synthetic data led to a 5.7% relative reduction in WER on
stuttered utterances. Benchmarking ASR systems for stuttered
speech is crucial for identifying performance gaps in ASR. Liu
et al. introduced ASTER, a technique for automatically testing
the accessibility of ASR systems by generating test cases that
simulate realistic stuttered speech to expose ASR failures [19].

Building on prior work, this work provides a more sys-
tematic benchmarking of ASR performance on stuttered speech
over different types of transcriptions and subtypes of stutters.
We also analyze hallucinations in the resulting ASR outputs to
understand their frequency and impact on user experience.

3. Methodology
3.1. Dataset

We leverage the SEP-28K dataset [6] for this study due to its
scale and quality. With over 28,000 3-second audio clips la-
beled with five distinct stuttering subtypes, SEP-28K captures
conversational stuttered speech in natural settings (i.e. pod-
casts), offering greater variability and heterogeneity within stut-
tering [20] than most existing stuttered speech datasets (e.g.
LibriStutter [21], FluencyBank [22]). Its growing adoption by
the research community also enables comparisons and valida-
tion of our results with related studies (e.g. [23, 24, 25, 26]).



3.2. Transcribing Audio Clips

Designed for stuttering event detection, SEP-28K does not in-
clude ground truth transcriptions for its audio clips. To ensure
sufficient statistical power in benchmarking Whisper’s perfor-
mance across different stuttering subtypes, we sample and man-
ually transcribe over 400 audio clips for each stuttering subtype
—block, prolongation, sound repetition, word repetition, and in-
terjection — as well as 542 fluent clips for baseline comparison.
Since SEP-28K uses multiple annotators for each clip, we pri-
oritize using clips with unanimous agreement on the stuttering
event subtype label to obtain the most representative audio clips
for each stuttering subtypes. For prolongations, where there are
less than 400 clips with unanimous agreement in SEP-28K, we
also include those with agreement between two annotators.
The first author, who is a person who stutters, listens to all
the audio clips in our sample and manually transcribes them
in two formats: verbatim and semantic. Verbatim transcrip-
tions preserve stuttered utterances such as word repetitions (e.g.
“when when are you guys getting”) and interjections (e.g. I,
hmm, am”), while semantic transcriptions omit the disfluencies
(e.g. “when are you guys getting”). Having verbatim transcrip-
tions is meaningful to PWS as it gives them agency over how
their speech is represented in the transcript [5, 27]. It also en-
ables PWS and speech language pathologists (SLPs) to analyze
and understand stuttered speech patterns more accurately [28].
When transcribing, the first author notices a significant
number of mistakes in the original event labels and adjusts the
labeling for over 25% (653) of the clips in our sample. The mis-
takes mainly stem from the challenge to distinguish stuttering
disfluency and natural disfluency, especially for fluent speakers.
For example, a dragged out "ummmm” can be a stuttering pro-
longation or a natural way for the speaker to indicate they are
thinking. To differentiate them, the annotators need to pay close
attention to the content, flow, and voice quality. When someone
stutters, they often change their tempo of speaking, change their
breathing, or their voice becomes strained. A small pause where
someone’s voice is strained is a block, but a long pause where
someone is thinking and their voice sounds fine is fluent speech.
Such subtlety was not considered during the original labeling
of SEP-28K, highlighting the need to involve people who stut-
ter—who are typically most attuned to speech changes during
stuttering moments—in the annotation of stuttered speech data.
After adjusting stuttering event labels — in particular, reas-
signing several stuttering clips as fluent — we end up sampling
and transcribing 2,621 clips to ensure we have sufficient data
for all stuttering subtypes. 542 of the 2,621 clips contain flu-
ent speech as our benchmarking baseline. The rest 2,079 audio
clips all contain at least one type of stutters, including blocks
(400 clips), prolongation (403), sound repetition (506), word
repetition (450), interjection (694). Note that the sum is greater
than 2,079, as some clips contain more than one stuttering types.

3.3. Benchmarking Whisper

OpenAl’'s Whisper is a Transform-based speech recognition
model trained on 680,000 hours of labeled audio data collected
from the web [29]. Approximately 117,000 hours of the audio
is non-English while rest is primarily English. Using a convo-
lutional encoder to convert log-mel spectrograms into embed-
dings and a decoder-only transformer to auto-regressively gen-
erate text, Whisper was a multi-task model trained to predict the
next token in the transcription or other task-specific output se-
quence. Whisper large-v2 version was released on December 8,
2022, and large-V3 version was released on November 6, 2023.

We run speech-to-text transcription for each manually tran-
scribed audio clip using OpenAI’s API for Whisper large-v2!
during August, 2024 and October, 2024. The same clips are
also transcribed using Whisper large-v3 through Hugging Face
in February 2025. To benmark Whisper’s performance, we
compare its outputs against manually generated verbatim and
semantic transcriptions. Evaluating against both types of tran-
scriptions allows us to assess its accuracy for stuttered speech
and its ability to preserve stuttering in transcriptions.’

3.4. Metrics

To evaluate Whisper’s transcription accuracy, we use Word Er-
ror Rate (WER) [30] to quantify syntax differences between
Whisper output and manual ground truth, and BERT (Bidi-
rectional Encoder Representations from Transformers) [31] F1
score to measure semantic differences. To examine how differ-
ent stuttering subtypes affect Whisper’s performance, we also
calculate average WER and BERT F1 scores separately for each
stuttering type. Since WER accounts for word substitutions,
deletions, and insertions relative to the reference transcription,
we also analyze these individual error types to better understand
Whisper’s behavior on stuttered speech.

As disfluent speech is reportedly more likely to trigger hal-
lucination [11], we also analyzed Whisper’s hallucination fre-
quency across different stuttering subtypes. To automate hal-
lucination detection, we leverage the non-deterministic nature
of hallucinations and follow a similar approach proposed by
Koenecke et al [11], programmatically identifying hallucina-
tions by comparing outputs from two separate runs of Whisper
of the same audio clip using WER, BERT F1, and insertion rate.
Specifically, for each audio clip, we treated the first run’s out-
put as the reference and the second run’s output as the infer-
ence, calculating WER and BERT F1 between the two. We also
count the number of words inserted by Whisper into the seman-
tic ground truth in the first run. A transcription from the first
run is automatically flagged as an potential hallucination if: (1)
WER between the two runs is greater than 0.6; or (2) BERT F1
score between two runs is less than 0.6; or (3) number of words
inserted into the semantic ground truth is greater than 4. The
first author then manually examine all flagged transcriptions to
correct false positives, and the second author review the final
hallucination labels for quality control.

4. Results

4.1. Overall performance disparity

Consistent with findings on other ASR systems [3], our re-
sults show that Whisper consistently perform worse on stuttered
speech than on fluent speech: producing more word-level mis-
takes and greater semantic divergence from the reference.

As illustrated in Figure la, while Whisper achieves rela-
tively low WERs on fluent speech (0.234 for Whisper v2, 0.230
for v3)®, the error rates nearly double for stuttered speech:
Whisper v2’s WERs are 0.489 (semantic) and 0.435 (verbatim);
and Whisper v3’s WERs are 0.420 (semantic) and 0.414 (verba-
tim). A smaller yet persistent gap is also observed with BERT

https://platform.openai.com/docs/guides/
speech-to-text

2The code for this research is available at: https://github.
com/aimpowered/stuttered-speech-benchmark

3Whisper’s performance on fluent clips is lower than previously re-
ported [29], likely due to the short duration (3 seconds) of SEP-28K
audio clips, which limits available context for the language model.
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Figure 1: Whisper v2 and v3 performance disparity between
fluent and stuttered speech, when using semantic and verbatim
manual transcriptions as ground truth

F1 scores (see Figure 1b).

When comparing semantic and verbatim transcriptions on
stuttered clips, we find that Whisper are better at generating ver-
batim transcriptions than semantic ones (v2 semantic WER =
0.489, verbatim WER = 0.435), though this difference narrows
in the newer version (v3 semantic WER = 0.420, verbatim WER
= 0.414). Our review of Whisper’s outputs confirms Whisper
v2’s ability to transcribe stuttering as they are — a capability that
appears diminished in v3. For example, for a clip with verbatim
transcription “so just” where the *j”” sound is repeated multiple
times, Whisper v2 is able to transcrlbed the repeated sound as

“So, j-j-j-j-j-just’, while v3 simply transcribes it as “so just”.

Designed to measure semantic similarity, BERT F1 scores
show minimal differences between semantic and verbatim tran-
scription tasks (see Figure 1b). This is expected, as the two
types of transcriptions of the same clip should differ only at the
syntax level while preserving similar meaning — resulting in lo-
cational proximity in the BERT embedding space [31].

Overall, Whisper v3 has made progress in closing its per-
formance gap between stuttered and fluent speech, improving
both WER and BERT F1 scores. It is encouraging to see that
advancements in Whisper also benefit people with speech diver-
sity, contributing to greater equity in speech technology.

4.2. Performance disparity by stutter subtypes

Grouping stuttered clips by stutter subtypes, we find Whisper
struggles most with sound repetitions (see Figure 2 sound rep)
while performing relatively well for speech with word repeti-
tions (see Figure 2 word rep). Overall, the WER for clips with
sound repetitions is 13% to 25% higher than the average for
stuttered clips, and more than double the WER for fluent clips.

Comparing to sound repetitions, Whisper handles interjec-
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Figure 2: Average WERs for different types of stuttered speech
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Figure 3: Whisper hallucination frequency by speech type

tions and word repetitions more effectively. As seen in Figure 2,
Whipser achieves relatively low WERs for clips with interjec-
tions and word repetitions in verbatim transcriptions.

However, we also observe a regression in Whisper’s ability
to transcribe repeated words in the newer version. As illustrated
in Figure 2, Whisper v3 outperforms v2 across all stuttering
subtypes and tasks except in transcribing clips with verbatim
word repetitions. For example, for a clip with the verbatim tran-
scription “which is which is terrible which is”, Whipser v2 out-
puts “it, which is, which is terrible, which is terrible.”, whereas
v3 generates “which is terrible which is terrible”. Word Repe-
tition is one of the most common forms of stuttering and a drop
in performance in v3 can significantly impact stutterers.

4.3. Hallucination

Consistent with previous findings on aphasia speech [11], we
find that Whisper is significantly more likely to hallucinate
when transcribing stuttered speech than fluent speech. As
shown in Figure 3, Whisper v2 hallucinates with 293 out of
2,086 (14%) stuttered clips, compared to just 18 out of 534
(3.3%) fluent clips. Whisper v3 has made significant progress in
reducing hallucination rates, with only 2.9% (61) hallucinations
for stuttered clips and 0.9% (5) for fluent clips.

Whisper v3 not only hallucinates less frequently than v2,
but also hallucinate in qualitatively different ways. Our man-
ual inspection of hallucinations reveals taht Whisper v2 tends
to hallucinate with a set of typical phrases (e.g. “thank you”,
“bye bye”), in a foreign language, or by adding large blocks of
unrelated content. In contrast, Whisper v3 often adds only one
or two words at the end of a sentence to complete it. Table 1
provides examples of typical hallucinations from both models.

In Figure 3, we can see Whisper’s hallucination frequency
varies across different stutter subtypes. Consistent with the
trends observed in Figure 2, clips with sound repetitions re-
main the most challenging: Whisper v2 hallucinates in 22.6% of
clips with sound repetitions, while v3 reduces this rate to 6.9%.



Table 1: Example hallucinations

* Contain stutter subtype annotations as defined in [5]: /b - block; /p - prolongation; /i - interjection; /r - sound repetition; [] - word repetition.

Type of Harm Manual Transcription* Whisper Transcription Model
Perpetuation of Violence that I like o/pne that I like won those fights. v2
False Authority its in uh/i 2000 Thank you. v2
False Authority and BYE EVERYONE DRINK FRESH WATER Available now v2
Inaccurate Association so i knelt know and im like hey So I knelt down, and I'm like, hey, God, I'm sorry. v2
Inaccurate Association chart dispense a/pnd keep a  If you have any questions or other problems, please post them in the comments. v2
record of daily Have a great day! If you want to receive daily updates on my videos, you can
subscribe to my YouTube channel.
Inaccurate Association y/pou ”Today’s Question is for you Tanya, which cook do you want to meet first and v2
how does”
Degrading Sound the/r It’s not. Da da da da da da da da da da da da. v2
Degrading Sound a/rll to ”Oh, oh, oh, toot, toot, toot, toot, toot, toot, ooh.” v2
Degrading Sound alr Woof, woof, woof, woof, woof. v2
/b uh/i Bye-bye. v2
c/b/rall CABIZROhAEDREDZDHIZR 6 LT hEHTIE &N v2
Perpetuation of Violence I am aircraft hummin aircraft handguns v3
Inaccurate Association Tt[It] it it asian v3
Degrading Sound ear/rth oink oink oink oink oink oink v3
Degrading Sound there’s a whole 1/rot theres a whole blah blah blah blah uh uh v3
a/rll to oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh v3

oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh

Notably, Whisper v3 has made significant progress with pro-
longations, lowering the hallucination frequency for this stutter
subtype by 90% — from 15.4% in v2 to 1.47% in v3.

Inspired by Koenecke et al.’s work on identifying and cat-
egorizing harmful hallucinations [11], we further examine the
hallucinated transcriptions for potential harm. As shown in Ta-
ble 1, we observe all major types of harm previously identified,
including the perpetuation of violence, inaccurate associations,
and false authority [11]. In addition, we notice a new category
of harmful hallucinations unique to the stuttered speech in our
dataset: degrading onomatopoeic hallucinations, such as “oink
oink oink” and “blah blah blah”. While Whisper v3 largely
eliminates hallucinations with false authority (i.e. thanking,
website links), the degrading onomatopoeia issue persists.

5. Conclusion

This paper evaluates the performance of Whisper, a state-of-
the-art ASR model, on the SEP-28K dataset. By manually an-
notating 2,600 audio clips with verbatim transcriptions and re-
fined stutter subtype labels, we assess Whisper’s performance
gap between stuttered and fluent speech, as well as disparities
across different stutter subtypes.

Our findings reveal that although the newer version of
Whisper has narrowed the performance gap between stuttered
and fluent speech, it also introduces regressions in transcribing
repeated words verbatim. Such regression is particularly con-
cerning for the stuttering community, as it limits their ability to
authentically preserve and represent their speech in transcripts.

‘We also observe a significant rate of hallucinations in Whis-
per’s transcriptions of stuttered speech — as high as 14% in
Whisper v2. This issue is especially pronounced for speech with
sound repetitions, a common and defining feature of stuttering,
posing real harm to the user experience of people who stutter.

Limitations and Future Directions. Our study has several
limitations. The short, fixed-length audio clips in SEP-28K,
combined with frequent speech disfluencies, pose significant
transcription challenges for both human annotators and ASR
models. Future work should evaluate ASR models on datasets
with variable-length audio, such as FluencyBank [22] and AS-
70 [5], to gain broader insights.

Community-Centered Speech Technology. This work un-
derscores the importance of incorporating the perspectives of
impacted communities in developing fair and inclusive speech
technologies. Guided by our lived experiences with stutter-
ing, we designed the verbatim transcription task and conducted
in-depth analyses across stutter subtypes. This approach en-
abled us to uncover Whisper’s regression in transcribing re-
peated words verbatim and its weakness with sound repetitions.

We hope our work inspires deeper partnership between
speech technology researchers and the disfluent community,
collaboratively advancing the development of more inclusive
and equitable speech science and technology.
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